
Theoretical Computer Science 607 (2015) 363–380
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

A better approximation for constructing virtual backbone in

3D wireless ad-hoc networks

Xiaofeng Gao ∗, Jun Li, Guihai Chen

Shanghai Key Laboratory of Scalable Computing and Systems, Department of Computer Science and Engineering,
Shanghai Jiao Tong University, 200240, Shanghai, PR China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 31 March 2015
Received in revised form 22 July 2015
Accepted 31 July 2015
Available online 7 August 2015

Keywords:
Wireless ad-hoc network
Virtual backbone
Connected dominating set (CDS)
Unit ball graph

Wireless ad hoc networks have been widely used in many areas. In order to improve
network performance, we often select a connected dominating set (CDS) as its virtual
backbone to deal with routing-related tasks. The problem of finding a minimum CDS
(MCDS) for 2-dimensional networks has been widely studied, whereas finding an MCDS
in 3-dimensional networks draws more attention recently, because it can formulate the
network environment more precisely. Since MCDS problem is proved to be NP-complete,
lots of approximations were proposed in literature. Among those, the best approximation
for MCDS in 3D network is 14.937 in [1]. However, their projection method during the
approximation deduction process is incorrect, which overthrows its final bound completely.
As a consequence, in this paper we will first propose a new projection method to overcome
their problem, illustrate the cardinality upper bound of independent points in a graph
(which will be used to analyze the approximation ratio), and then optimize the algorithms
to select MCDS with prune techniques. The major technique we use is an adaptive jitter
scheme, which solves the open question in this area.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Wireless ad hoc networks consist of lots of wireless nodes, which serve not only as mobile hosts but also as routers. Be-
cause of such characteristics, wireless ad hoc networks can be widely used in lots of applications such as sensor monitoring,
traffic control, mobile computing, etc. [2–5]. However, those networks do not have physical infrastructures. When any two
nodes in a wireless ad hoc network want to communicate with each other, they must forward messages to intermediate
nodes to construct route between them. Consequently, this will cause unnecessary energy consumption and even broadcast
storm when routing.

To overcome such shortcomings, we usually construct a virtual backbone to response for routing related tasks. A virtual
backbone consists of a subset of all nodes in a wireless ad hoc network. Every node in the wireless ad hoc network is either
in this subset or adjacent to at least one node of the subset. With virtual backbone, each ordinary node only need to send
messages to its surrounding nodes which are in virtual backbone. And the nodes in virtual backbone will help it to forward
such messages to its destination. As a result, virtual backbone can greatly reduce forwarding processes in wireless ad hoc
networks. In literature, virtual backbone has been widely studied [6–9].

* Corresponding author.
E-mail addresses: gao-xf@cs.sjtu.edu.cn (X. Gao), lijun2009@sjtu.edu.cn (J. Li), gchen@cs.sjtu.edu.cn (G. Chen).
http://dx.doi.org/10.1016/j.tcs.2015.07.061
0304-3975/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.tcs.2015.07.061
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:gao-xf@cs.sjtu.edu.cn
mailto:lijun2009@sjtu.edu.cn
mailto:gchen@cs.sjtu.edu.cn
http://dx.doi.org/10.1016/j.tcs.2015.07.061
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2015.07.061&domain=pdf

364 X. Gao et al. / Theoretical Computer Science 607 (2015) 363–380
For any given wireless ad hoc network, we can represent it by an undirected graph G = (V , E) as follows: any vertex
v ∈ V corresponds to a node in the original network, while any edge (u, v) ∈ E represents that the nodes corresponding
to vertices u and v can communicate with each other. Moreover, it is widely accepted that a connected dominating set
(CDS) of the given graph is often the first choice to construct a virtual backbone for the corresponding wireless ad hoc
network [10,11]. A CDS is defined to be a subset of V in a given graph G = (V , E), such that every vertex of V is either in
this subset or adjacent to a vertex in this subset and this subset can induce a connected subgraph.

Most literature discussed CDS in two-dimensional space, and use a unit disk graph (UDG) to model the network.
However, such model cannot precisely describe the non-flat area such as mountainous region [12] or underwater envi-
ronment [13]. Correspondingly, we can use a unit ball graph (UBG) to model such a network in 3-dimensional space. In
a UBG G = (V , E), any two vertices are adjacent (or connected) if and only if the Euclidean distance between them is at
most 1.

Since UBG can formulate a network environment more precisely than UDG, CDS in UBG can represent more applications
than that in UDG. For instance, Wang et al. [14] constructed 3D landmark maps with vision data extracted from camera
images, and then used 3D-CDS to improve data association in application of simultaneous localization and mapping (SLAM).
Yang [15] implemented 3D-CDS as clusters to find an optimal topology control strategy in 3D wireless sensor networks. In
all, it is significant to design fast algorithms for selecting an appropriate CDS set from a given network and analyze their
performance. Typically, a CDS with minimum cardinality is the most efficient choice for practical use, and we refer it as
MCDS.

Finding a minimum CDS (MCDS) is a well-known NP-complete problem, and lots of approximation algorithms were
proposed during last decade. Those algorithms often include two phases. Firstly, they choose a maximal independent set
(MIS) from G . Second, they add some extra nodes from G to connect this MIS, usually by Steiner trees. An MIS in a graph
G = (V , E) is a subset M ⊆ V such that any two vertices from M are not connected and we cannot add another vertex from
M\V to form a bigger MIS. Easy to see, in UDG or UBG, the distance between any two vertices in M should be more than 1.

In 2-dimensional situation, the approximation ratio of such algorithms has been widely studied. Based on the fact that
the neighborhood area of any node can contain at most five independent points, Wan et al. [16] proposed that mis(G) ≤
4mcds(G) + 1. Later, Wu et al. [17] improved this ratio to 3.8 by proving that the neighborhood of any two adjacent nodes
can contain at most 8 nodes. In [18], Gao et al. showed the bound can be at most 3.453 and Li et al. improved the ratio
into 3.4305 in [19]. Recently, Du et al. [20] showed that mis(G) ≤ 3.399mcds(G) + 4.874, which is the best result up to now.

To analyze the performance of those approximations, we need to decompose the algorithm selection and compare each
part separately to an optimal solution. If alg(G) is the size of selected MCDS by those algorithms, then the approximation
ratio of these algorithms can be calculated by

alg(G)

mcds(G)
= mis(G)

mcds(G)
+ connector(G)

mcds(G)
,

where mis(G) is the size of MIS the algorithm selected, connector(G) is the number of nodes used to connect such MIS,
and mcds(G) is the size of an optimal MCDS. Generally, connector(G) highly depends on the value of mis(G). Thus, the ratio
mis(G)/mcds(G) plays an important role when analyzing the performance of those approximations.

An interesting geometric property between an MIS and a MCDS will be helpful for us to calculate mis(G)/mcds(G). For
example, in UDG, if we shrink the radius of a disk from 1 to 0.5 for any vertices in the graph (denoted as small disks),
and enlarge the radius of a disk from 1 to 1.5 for any vertices in an optimal MCDS (denoted as large disks), then any small
disks will locate in the region formed by the union of MCDS large disks, and any two disks formed by two independent
vertices will not intersect with each other. Fig. 1 shows such a scenario, where the red points denote a vertex in MCDS and
blue points denote independent vertices. Hence, we can apply disk packing, namely how many disks with radius 0.5 the
dominating areas of an MCDS can contain, to estimate the ratio of mis(G)/mcds(G).

Although finding a minimum CDS in UBG is very similar as in UDG, the approximation analysis for UBG is much harder
since the geometric properties in UBG are more complicated to analyze than in UDG. In UDG, the problem of “how many
disks of the same size can a disk touch” is a foundation for disk packing [18–20]. Easy to see, when a disk touch two disks
of the same size, the angle of those two touched disks to this touching disk is at least π/3. Therefore, we can easily figure
out that a disk can touch 2π

π/3 = 6 disks of the same size. However, when it comes to three-dimension, the correspond-
ing discussion is not that easy. In UBG, we can use the same ideas in UDG and replace those disks with corresponding
spheres. Then, we can use sphere packing to estimate the ratio of mis(G)/mcds(G) in UBG. Similarly, we should first solve
the corresponding extended problem, “how many spheres of the same size can a sphere touch”, which is well known as
Gregory–Newton problem. However, this problem is so difficult that it has been a puzzle in literature until 1953 [21].

To the best of our knowledge, few papers studied the approximation ratio for MCDS problem in UBG. In the earlier
stage, Hansen et al. [22] discussed the expected size of a CDS in a random UBG and compared the performance of existing
algorithms. Later, Butenko and Ursulenko [23] proved that the ratio of mis(G)/mcds(G) in UBG is at most 11 by using the
well-known fact that a sphere can touch at most twelve spheres of the same size, which induced an approximation ratio
of 22 for MCDS in UBG. Zhong et al. [24] claimed that such ratio could be reduced to 16. However, Kim et al. [1] pointed
out and proved that both the algorithm and approximation analysis in [24] have problems. Zou et al. [25] further reduced
this ratio to 13 + ln 10. Recently, Kim et al. [1] referred the idea in [17] and tried to answer how many independent points
can be contained in two adjacent unit balls. Finally, they improved the ratio of mis(G)/mcds(G) into 10.917 by showing

X. Gao et al. / Theoretical Computer Science 607 (2015) 363–380 365
Fig. 1. An example to show disk packing.

that there are at most 22 independent points in two adjacent unit balls, and finally got an approximation ratio of MCDS as
14.937, which is the best result up to now.

However, after careful investigation, we find that during the deduction process in [1], one of the intermediate assertion
is incorrect, which overthrows the final result completely. The main technique they implemented in their proof is a pro-
jection method to the ball surface and then applying some famous graph theories, and the problem comes under some
scenarios when the projection result cannot guarantee the distance lower bound of two independent points. Researchers
later found that designing a projection method to guarantee the distance lower bound is not an easy step, and it remains
an open question in recent years [26]. As a consequence, in this paper we will first introduce a new projection method to
guarantee the distance bound, and then illustrate the bound of mis(G)/mcds(G) with some new analyzing techniques. Since
the mistake in [1] only influences the analysis of the approximation ratio mis(G)/mcds(G), the algorithms and analysis in
the MIS connecting part in [1] remain to be correct. Thus we will adopt those correct parts to solve the MCDS problem
completely. At the end of this paper, we will further optimize the algorithms for MCDS selection in [1] with prune process
and validate the efficiency of our design by numerical experiments.

The rest of the paper is organized as follows: Section 2 illustrates the problem in [1] with counter examples. Section 3
introduces our new projection method to analyze the ratio of mis(G)/mcds(G). Section 4 discusses how to improve MCDS
algorithm while Section 5 exhibits the simulation results with different parameter settings. Finally, Section 6 summarizes
this paper.

2. Independent points in two adjacent unit balls

In [17], Wu et al. first proved that the neighborhood of any two adjacent nodes can contain at most 8 nodes in UDG.
Based on this fact, they then use mathematical induction to improve the ratio mis(G)/mcds(G) to 3.8. Similar with the analy-
sis in [17], once we have the answer of “two-ball problem”, we can deduce a better upper bound for the ratio mis(G)/mcds(G)

and reduce the overall approximation ratio. Two-ball problem means the problem of “how many independent points can be
contained in two adjacent unit balls”. Here two adjacent unit balls mean the Euclidean distance between two balls with
unit radius is at most 1, while any two points are called independent points if and only if their Euclidean distance is at
least 1.

Actually, what Kim et al. did in [1] follows this idea. However, their method have an unavoidable error. In Subsection 2.1
we will review their method to prove two-ball problem, and then in Subsection 2.2 we will precisely point out where their
problem lies and provide a counter example to validate our claim.

2.1. Review Kim’s method in [1]

In [1], Kim et al. referred the idea in [17] and improved the ratio of mis(G)/mcds(G) into 10.917 by showing that there
are at most 22 independent points in two adjacent unit balls. Their answer to the two-ball problem is the most important
contribution in their paper. In order to solve the two-ball problem, Kim et al. extended the approach for solving the famous
Gregory–Newton problem [21]. They considered two adjacent unit balls, say, B1 and B2 with centers u1 and u2. To get an
upper bound of MIS in these two adjacent balls, they assumed that the Euclidean distance between u1 and u2 is equal to 1,
since the total volume of B1 ∩ B2 is larger when the distance between these two adjacent nodes increases, and consequently
more independent nodes can be contained in B1 ∩ B2. They then divided all the independent nodes into two categories: the
nodes located in (B1 ∪ B2)\(B1 ∩ B2) and the nodes in B1 ∩ B2. They mainly focused on the former part and claimed that
the size of MIS in this region is at most 20 with a special “projection” method.

Their projection method is a mapping rule to project all the independent nodes in (B1 ∪ B2)\(B1 ∩ B2) to the surface of
B1 ∪ B2. The detailed description can be shown as follows: For each independent node v , if v ∈ B1\B2 (respectively, B2\B1),
then draw a radial from u1 (respectively, u2) going through v , and intersect the outer surface of B1 (denoted by Sur(B1),

366 X. Gao et al. / Theoretical Computer Science 607 (2015) 363–380
Fig. 2. An example to show d(P1, P2) < 1.

Fig. 3. A counter example in 2D.

and respectively Sur(B2)) at point P . By this mapping rule, they got the projection points set {P1, P2, · · · , Pt}, where t is
the size of MIS in (B1 ∪ B2)\(B1 ∩ B2).

Next, for any two points Pi and P j , if their Euclidean distance (denoted by d(Pi, P j)) is between 1 and 3 arccos(1/7)π ,
they made a curve from Pi to P j on Sur(B1 ∪ B2) in the specified way as shown in Section 3.2.1 in [1]. These curves
partition Sur(B1 ∪ B2) into some tiny faces. By analyzing the lower bounds of those faces’ areas and using Euler’s formula,
they proved that t ≤ 20. Combined with the fact that a unit ball can pack at most 12 independent nodes [21], they finally
concluded that the number of MIS in the union of two adjacent unit balls is at most 22.

2.2. The problem of Kim’s method with counter examples

After careful investigation, we find that in Section 3.2 of [1], one of the intermediate assertion is incorrect, which over-
throws the final result completely. This assertion says:

“According to their mapping rule, on Sur(B1 ∪ B2), for any Pi and P j, d(Pi, P j) > 1.”

The assertion is a foundation of their work. With this assertion, they could conclude that no two curves on Sur(B1 ∪ B2) can
intersect, which is a declaration to guarantee the correctness of the lower bound for the tiny faces’ areas on Sur(B1 ∪ B2).

However, although in many cases this assertion seems correct, it is not valid for every possible scenario. Let us provide
an example to show why it is incorrect. In this example, v1 and v2 are two independent nodes located in two different
balls and their projection points are P1 and P2 respectively, as Fig. 2 shows. Specially, we can let v1, v2, u1 and u2 locate
in a same plane. Moreover, we set θ1 + θ2 ≤ π , where θ1, θ2 denote � v1u1u2 and � v2u2u1 respectively.

Now we prove that d(P1, P2) ≤ 1 in this situation. Since all points in this case are on a same plane, we can convert this
case as a 2D plane in Fig. 3. Consider �P1M P2 in Fig. 3, by the Law of Cosines, we have

d2(P1, P2) = d2(P1, M) + d2(M, P2) − 2d(P1, M)d(M, P2) cos � P1M P2.

From Fig. 3, we find that

� P1M P2 = � T1MT2 + � T1M P1 + � T2M P2, where � u1MT1 = � u2MT2 = π/2.

X. Gao et al. / Theoretical Computer Science 607 (2015) 363–380 367
Table 1
Notations and symbols.

Notation Description

d(P , Q) The Euclidean distance between P and Q
|P Q | The spherical distance between P and Q on a ball or the arc distance on a disk
u1 and u2 Two “constant” dominator nodes in this section, and d(u1, u2) = 1
B1 and B2 Two adjacent unit balls with centers u1 and u2

Sur(B) The outer surface of a geometric object B
disk(v) The unit disk with center v
L The intersection of the perpendicular bisector plane of segment u1u2 with Sur(B1 ∪ B2)

direct projection The mapping rule in [1] (as mentioned in Section 2.1)
dpp(v) The direct projection point of v
principal plane For any vertex v , the plane going through point v , u1 and u2 is called the principal plane of v
pp(v) The principal plane of v

Here T1M and T2 M are tangent lines to disk(u1) and disk(u2) respectively (disk(u) is the cycle centered at u with radius 1).
According to Alternate Segment Theorem,

� T1M P1 = � P1u1M/2, � T2M P2 = � P2u2M/2.

Therefore, � P1M P2 = (θ1 + θ2)/2 + π/3. Also, it is easy to get � P1u1M = θ1 − π/3. Then,

d(P1, M) = 2 sin(θ1/2 − π/6), d(P2, M) = 2 sin(θ2/2 − π/6).

Hence, the Euclidean distance between P1 and P2 is:

d2(P1, P2) = 4 cos2(
θ1 + θ2

2
) − 4 cos(

θ1 + θ2

2
) cos(

θ1 − θ2

2
) + 1.

Since θ1 + θ2 ≤ π in this case, 0 ≤ cos(
θ1 + θ2

2
) ≤ cos(

θ1 − θ2

2
). Therefore, d2(P1, P2) ≤ 1, which is a counter example for

Kim’s assertion.
Actually, we can also get a lower bound for d(P1, P2) when v1 and v2 move to points u1 and M respectively. In that

case, d(P1, P2) is equal to 2 sin(π/12) ≈ 0.5176, which is far less than 1.
Correspondingly, if we cannot ensure the distance between any two projection vertices Pi and P j is always larger than 1,

then the two diagonals of the quadrilateral formed by four projection points can be both smaller than 3 arccos(1/7)/π . In
that case, the two diagonal curves will intersect. Hence, the correctness of the work in [1] meets great difficulty.

3. A new projection method

According to the discussion in Subsection 2.2, we have to guarantee d(P ′
1, P

′
2) ≥ 1 for any pair of independent points on

the surface of two adjacent unit balls if we hope to achieve an approximation ratio of 10.917. In this section we introduce a
new projection method to overcome Kim’s flaw. The main idea of our method is an adaptive jitter scheme in the projection
process when we map the independent nodes in (B1 ∪ B2)\(B1 ∩ B2) to the surface of B1 ∪ B2.

In detail, we first propose Lemma 1 to show that every projection point in [1] has an available range (and we define it as
Effective Projection Region). Arbitrarily moving any two projection points in their Effective Projection Region will not break
the condition d(P ′

1, P
′
2) ≥ 1 if the projection points are located in a same ball. The next part of this section is to prove the

same property for the case where the projection points are located in different balls. Correspondingly, we formally define
our new projection in Definition 4. With this new projection, we have Theorem 5, which is our main observation in this
section. To make the proof of Theorem 5 better understood, we first discuss the two-dimensional situation as a special
case in Subsection 3.1. Afterwards, we generalize our conclusion for three-dimensional situation in Subsection 3.2. With
Theorem 5, we can use our new projection to replace the projection in [1] and use the remaining part in [1] to correctly
achieve an approximation ratio of 10.917 for mis(G)/mcds(G).

Before introducing our new projection, we need to introduce some notations and definitions as Table 1 shows, which are
frequently used in the rest of this paper.

In order to apply geometric principle to solve our problem, we allow that the distance between a pair of independent
nodes is equal to one, which is also the densest case. (Actually, we will often use this critical distance in the coming parts
of analysis.) Also, as discussed before, to get an upper bound of MIS in two adjacent balls, we should make the Euclidean
distance between them as large as possible. Thus as Table 1 shows, we set d(u1, u2) = 1.

In most cases, for any two independent nodes v1, v2 located in B1 and B2 respectively, we know that d(P1, P2) is larger
than 1, where P1 = dpp(v1) and P2 = dpp(v2). However, sometimes d(P1, P2) may be also less than 1 as Subsection 2.1
shows. According to our observation, when d(P1, P2) < 1 occurs, at least one of v1 and v2 is much closer to its dominator
(u1 or u2), which can be found from Fig. 2. Without loss of generality, we say the closer node is v1. In the unit ball B1, we
know the size of its MIS is at most 12. But if we want to put all the 12 independent nodes in B1, the efficient way is to put

368 X. Gao et al. / Theoretical Computer Science 607 (2015) 363–380
Fig. 4. The new projection of P ′
1 and P ′

2.

Fig. 5. The projection region when r2 = 1.

Fig. 6. The projection region when r2 < 1.

all of them on Sur(B1). Consequently, if v1 is much closer to u1, it will greatly affect the total number of MIS in B1, and
the size of MIS in B1 ∪ B2 will also be affected. We consider this MIS number decrease as the sacrifice to shorten d(P1, P2).
In order to quantitatively describe and use this property, we provide Lemma 1 as follows.

Lemma 1. A unit ball B with center u contains two independent points v1, v2 and d(u, v1) = r1 , d(u, v2) = r2 , dpp(v1) = P1 ,
dpp(v2) = P2 . P ′

1 (respectively, P ′
2) is an arbitrary point in the cycle region on Sur(B1) (respectively, Sur(B2)) with center P1 (respec-

tively, P2) and spherical radius arccos(r1/2) − π/3 (respectively, arccos(r2/2) − π/3) as Fig. 4 shows. Then d(P ′
1, P

′
2) ≥ 1.

Proof. First, we consider the 2D situation as Figs. 5 and 6 show. In Fig. 5, point v1 is in disk(u). M1, M2 are intersection
points of uv1’ perpendicular bisector and disk(u). Since all independent nodes with v1 are outside disk(v1), nodes in disk(u)

which are independent with v1 cannot locate above line M1 M2.
It is easy to know the available region of P ′

1 on disk(u) is from Pl
1 to P r

1, where
∣∣Pl

1 P1
∣∣ = ∣∣P1 P r

1

∣∣ = arccos(r1/2) − π/3
(shown in Fig. 5). Further, � M2uv1 = arccos(r1/2). Hence,

∣∣P r
1M2

∣∣ = π/3 and d(P r
1, M2) = 1. Similarly, d(Pl

1, M1) = 1. Based
on the location of v2, there are two situations to discuss.

X. Gao et al. / Theoretical Computer Science 607 (2015) 363–380 369
Case 1: If v2 is on the circle of disk(u), then P2, P ′
2 and v2 are the same point. Since v2 must locate below M1 M2 and P ′

1
is on the arc between Pl

1 and P r
1, it is obvious to conclude that d(P ′

1 P ′
2) ≥ 1.

Case 2: When v2 is not on the circle of disk(u) (as Fig. 6 shows), P ′
1 (P ′

2, respectively) locates between Pl
1 and P r

1 (Pl
2 and

P r
2, respectively). Next, we will prove that d(P ′

1, P
′
2) is minimum when P ′

1 is at point P r
1 and P ′

2 is at point Pl
2.

As Fig. 6 shows, segment uM is the midperpendicular of P r
1 Pl

2. And lines P r
1T1 and Pl

2T2 are parallel to uM . Then,
all points in the arc from Pl

1 to P r
1 and the arc from Pl

2 to P r
2 are outside the parallel lines P r

1T1 and Pl
2T2. Therefore,

d(P ′
1, P

′
2) ≥ d(P r

1 Pl
2). On the other side, d(P r

1 Pl
2) ≥ 1 is equivalent to

∣∣P r
1 Pl

2

∣∣ ≥ π/3. Combining with Law of Cosines, we
have ∣∣∣P r

1 Pl
2

∣∣∣ = � P r
1 Pl

2 = � P1u P2 − � P1u P r
1 − � P2u Pl

2 = arccos

(
r2

1 + r2
2 − 1

2r1r2

)

−
[

arccos
(r1

2

)
− π/3

]
−

[
arccos

(r2

2

)
− π/3

]
.

When r1 is fixed, it can be proved that the value of
∣∣P r

1 Pl
2

∣∣ decreases when r2 increases.

Let f (r1, r2) = arccos(
r2

1 + r2
2 − 1

2r1r2
) − [arccos(

r1

2
) − π

3
] − [arccos(

r2

2
) − π

3
]. Then,

∂ f (r1, r2)

∂r2
= 1

2

1√
1 − (r2

2)2
− r2

2 − r2
1 + 1

2r2
2r1

1√
1 − (

r2
2+r2

1−1
2r2r1

)2

= 1

2

1√
1 − (r2

2)2
− r2

2 − r2
1 + 1

2r2
2

1√
r2

1 − (
r2

2+r2
1−1

2r2
)2

.

Since r1 ≤ 1,
r2

2 + 1 − r2
1

2r2
2

≥ 1
2 . Moreover,

1 −
(r2

2

)2 ≥ r2
1 −

(
r2

2 + r2
1 − 1

2r2

)2

⇔ r2
1 − 1 ≤ 2r2

2.

Obviously, r2
1 − 1 ≤ 0 ≤ 2r2

2 . Therefore, ∂ f (r2)
∂r2

≤ 0, which means f (r2) decreases with the value of r2 increases.

Thus, when r2 equals one,
∣∣P r

1 Pl
2

∣∣ will be minimized, which is exactly Case 1 where v2 is on the circle of disk1(u). Hence,
d(P ′

1, P
′
2) ≥ 1.

Similarly, it is easy to extend the 2-dimensional situation to 3-dimensional situation. In this situation, u, v1 , v2, P1 and
P2 are in the same plane. In this plane, there also exist a pair of boundary points (P r

1, Pl
1, Pl

2, P r
2) for P ′

1 and P ′
2 on the

big circle going through u, v1, and v2. We can also draw two planes respectively going through P r
1 and Pl

2 and make them
parallel to the midperpendicular plane of segment P r

1 Pl
2. It is easy to see that points P ′

1 and P ′
2 will not locate inside those

two parallel planes. Therefore, d(P ′
1, P

′
2) ≥ d(P r

1, P
l
2) ≥ 1, which has been proved in 2-dimensional situation. �

According to Lemma 1, we come up with a new region called “Effective Projection Region” to describe the extra feasible
moving space of P ′

1 or P ′
2.

Definition 2 (Effective projection region). For node v in a unit ball B , its direct projection point is P . The region on Sur(B)

whose center is point P and spherical radius is arccos(r/2) − π/3 is called v ’s effective projection region, where r is the
Euclidean distance between v and B ’s center.

Obviously, in a 3D space, for any two independent nodes v1 and v2 in a unit ball B , their direct projection points are
P1 and P2. According to Lemma 1, if we arbitrarily move P1 and P2 along Sur(B) inside their effective projection regions,
d(P1, P2) will always ≥ 1. Next, we will discuss the situation where v1 and v2 are in two different balls. Before that, we
first define our new projection rule.

Definition 3 (Region projection). For any independent node v , its direct projection point is P , then any point which locates
in v ’s effective projection region is a Region Projection point of v .

Definition 4 (Final projection). For any point v in (B1 ∪ B2)\(B1 ∩ B2), the pp(v) intersects with L and we assume M is the
closer intersection point to v . P ′ is v ’s final projection if and only if it satisfies conditions as follows:

1) P ′ is a region projection point of v .
2) P ′ is located on pp(v).

370 X. Gao et al. / Theoretical Computer Science 607 (2015) 363–380
Fig. 7. Discussion in 2-dimensional space.

3) Among all the points satisfying 1) and 2), P ′ is the farthest from M .

Theorem 5. For any two independent nodes v1 and v2 in (B1 ∪ B2)\(B1 ∩ B2), their final projection points are P ′
1 and P ′

2 . Then,
d(P ′

1, P
′
2) ≥ 1.

Next, we will prove the correctness of Theorem 5. To make it simple, we first discuss the two-dimensional situation as a
special case in Subsection 3.1. Afterwards, we generalize our conclusion for three-dimensional situation in Subsection 3.2.

By Lemma 1, if v1 and v2 are in the same unit ball, d(P ′
1, P

′
2) ≥ 1. Thus, we only need to consider the situation when v1,

v2 are in different balls. Without loss of generality, let v1 in B1 and v2 in B2.

3.1. Proof of Theorem 5 in 2-dimensional space

When u1 v1 and u2 v2 are in the same principal plane, our problem turns into a 2D problem as shown in Fig. 7.
In Fig. 7, P1 and P2 denote dpp(v1) and dpp(v2); θ1 and θ2 denote � P1u1u2 and � P2u2u1; r1 and r2 denote d(v1, u1)

and d(v2, u2); α and β denote
∣∣P ′

1M
∣∣ and

∣∣P ′
2M

∣∣ respectively. M is the intersection of the common principal plane with L.
To simplify our problem, we assume d(v1, v2) = 1.

As we did in Section 2.2, we can figure out the expression of d(P ′
1, P

′
2). In �P ′

1M P ′
2, it is easy to figure out that

d(P ′
1, M) = 2 sin

α

2
,d(P ′

2, M) = 2 sin
β

2
, and � P ′

1M P ′
2 = 2π

3
+ α + β

2
,

(with Alternate Segment Theorem). By the Law of Cosines, we have

d2(P ′
1, P ′

2) =
(

2 sin
α

2

)2 +
(

2 sin
β

2

)2

− 2
(

2 sin
α

2

)(
2 sin

β

2

)
cos � P ′

1M P ′
2

= 4 cos 2
(

α + β

2
+ π

3

)
− 4 cos

(
α + β

2
+ π

3

)
cos

(
α − β

2

)
+ 1. (1)

Let x = cos(
α + β

2
+ π

3
) and y = cos(

α − β

2
). Construct function f (x, y) = 4x2 − 4yx + 1, where y ≥ 0. Easy to see that

x ≤ 0 ⇒ f (x, y) ≥ 1. That means α + β ≥ π

3
. Moreover,

f (x, y) ≥ 1 ⇔ x ≤ 0 or x ≥ y.

If x ≥ y, then cos(
α + β

2
+ π

3
) ≥ cos(

α − β

2
) ≥ 0. Hence, α + β ≤ π

3
and

α + β

2
+ π

3
≤ α − β

2
⇒ β + π

3
≤ 0, which is

impossible. Therefore, d(P ′
1, P

′
2) ≥ 1 is equivalent to α + β ≥ π

3
.

According to Definition 4, we have α = θ1 + arccos(r1/2) − 2π/3, and β = θ1 + arccos(r1/2) − 2π/3. Thus, our goal is to
prove

θ1 + θ2 + arccos(
r1

2
) + arccos(

r2

2
) ≥ 5π

3
. (2)

As arccos(r1/2) ≥ π/3 and arccos(r2/2) ≥ π/3, we only need to consider the case where θ1 + θ2 < π . Based on this, we
have Lemma 6.

X. Gao et al. / Theoretical Computer Science 607 (2015) 363–380 371
Fig. 8. Proof of d(v1, P2) ≥ 1.

Fig. 9. The transitive instance.

Lemma 6. At least one of d(v1, P2) and d(v2, P1) is equal to or larger than 1.

Proof. Since d(v1, v2) = 1 and θ1 + θ2 < π , v1 v2 can not be parallel to u1u2. Without loss of generality, assume v1 is closer
to u1u2, as Fig. 8 shows.

Draw a line v1 v ′
1, make it parallel to u1u2 and intersect with u2 v2 on point v ′

1. Since θ1 + θ2 < π , v1 v ′
1 < 1,

there must exist a point X between u2 and v ′
1 such that d(v1, X) = 1. Hence, � v1 v2u2 < π/2. Consequently,

d(v1, P2) ≥ d(v1, v2) = 1. �
In our problem, the value of d(P ′

1, P
′
2) completely depends on parameters: r1, r2, θ1, and θ2. Once these four parameters

are given, the value of d(P ′
1, P

′
2) is completely specified. Therefore, we use (r1, r2, θ1, θ2) to denote one instance of our

problem.

Lemma 7. For any fixed instance (r1 , r2 , θ1 , θ2) with d(v1, v2) = 1, there always exists an instance (r′
1, 1, θ ′

1 , θ ′
2) or (1, r′

2 , θ ′
1 , θ ′

2) with
d(v ′

1, v
′
2) = 1 such that d(P ′

1, P
′
2) in the former instance is larger than the later one.

Proof. To prove this lemma, we need to construct a transformation from the original instance (r1, r2, θ1, θ2) to the desti-
nation instance (r′

1, 1, θ ′
1, θ ′

2) or (1, r′
2, θ ′

1, θ ′
2). According to Lemma 6, we assume that in the original instance d(v1, P2) ≥ 1

without loss of generality.
Let us consider a transitive instance (r1, 1, θ1, θ2), as Fig. 9 shows. In this transitive instance, vt

1 and vt
2 are the two

independent nodes and they locate on v1 and P2 respectively. Compared with the original instance, this transitive instance
owns a same α and a smaller β . Consequently, d(P ′

1, P ′
2) in transitive instance is shorter than the original instance.

Next, we will construct the destination instance from the transitive instance. As Fig. 10 shows, we put v ′
2 on the point vt

2.
disk(v ′

2) intersects with segments u1 P1 and vt
1 vt

2 on F1 and F2. Then we put v ′
1 on the arc between F1 and F2 and make

sure v ′
1 locates outside disk(u2). It is easy to verify that � v ′

1u1u2 ≤ � v1u1u2 and d(v ′
1, u1) ≥ d(v1, u1) which results in a

smaller α. Consequently, d(P ′
1, P

′
2) is also smaller.

In conclusion, Lemma 6 follows. �
Since we want to explore the minimum value of d(P ′

1, P
′
2), we will use (r1, 1, θ1, θ2) with d(v1, v2) = 1 to complete our

next work.

372 X. Gao et al. / Theoretical Computer Science 607 (2015) 363–380
Fig. 10. The construction of destination instance.

Fig. 11. The value of r1 in 2-dimensional space.

Since d(v1, v2) = 1, we can figure out the relation between θ1 and r1, θ2. As Fig. 11 shows, we build a polar coordinates
on u1. In �v2u1u2, it is easy to figure out that d(v2, u1) = 2 sin(θ2/2). Then, the coordinates of v1 and v2 are (θ1, r1) and
(π/2 − θ2/2, 2 sin(θ2/2)). Hence, we have

d2(v1, v2) = r2
1 +

(
2 sin

θ2

2

)2

− 2r1

(
2 sin

θ2

2

)
cos

(
θ1 − π − θ2

2

)
= 1

⇒ sin

(
θ1 + θ2

2

)
= r2

1 − 1 + 4 sin2 θ2
2

4r1 sin θ2
2

Since θ1, θ2 ∈ [π/3, 2π/3], then θ1 + θ2/2 ≥ π/2. Hence,

θ1 = π − θ2

2
− arcsin

(
r2

1 − 1 + 4 sin2 θ2
2

4r1 sin θ2
2

)
. (3)

With Equation (3), the value of
∣∣P ′

1M
∣∣ is a function of r1 and θ2, and we denote it as α(r1, θ2). According to Definition 4,

we have

α(r1, θ2) = π − θ2

2
− arcsin

(
r2

1 − 1 + 4 sin2 θ2
2

4r1 sin θ2
2

)
+ arccos(

r1

2
) + 2π

3
.

By analyzing the sign of ∂α(r1, θ2)/∂r1, it can be proved that, when θ2 is fixed, α(r1, θ2) is minimum when r1 is min-
imum or maximal. Since all we talk here is a special case of 3-dimensional situation, the detailed proof can be found in
Lemma 10. Therefore, what we need to do next is to verify d(P ′

1, P
′
2) ≥ 1 for the two situations where r1 is minimal and

maximal.

Case 1: (r1 is minimal): For this case, we first need to figure out the minimal value of r1 when θ2 is fixed. Considering
v1 locates in disk(u1)\disk(u2), it is obvious that, when v1 locates on the intersection of disk(v2) with disk(u2), r1
reaches minimal. Then, d(v1, u2) = 1, � v1u2 v2 = π/3, θ1 = 2π/3 − θ2/2 and r1 = 2 cos θ1. Consequently, θ1 + θ2 +
arccos(r1/2) + arccos(r2/2) = 5π/3 which meets inequality (2). Hence, in this case, d(P ′ , P ′) ≥ 1.
1 2

X. Gao et al. / Theoretical Computer Science 607 (2015) 363–380 373
Fig. 12. Discussion in 3-dimensional space.

Case 2: (r1 is maximal): It is easy to figure out that the maximal value of r1 is 1 when v1 locates on the boundary of
disk(u1). In this case, P ′

1 and v1 are the same. d(P ′
1, P

′
2) = d(v1, v2) = 1 which also meets the requirement in

Theorem 5.

Now that statement of Theorem 5 holds for the two above situations where d(P ′
1, P ′

2) will reach the minimal, Theorem 5
holds for any case in 2-dimensional space.

3.2. Proof of Theorem 5 in 3-dimensional space

In this section, we discuss the general situation where u1 v1 and u2 v2 are in different principal planes. In this case, we
follow the ideas in 2-dimensional situation and give the same result.

First we explore the equivalent condition for d(P ′
1, P ′

2) ≥ 1. In Fig. 12, δ denotes the dihedral angle between those two
principal planes, 	1 and 	2; α and β denote

∣∣P ′
1M1

∣∣ and
∣∣P ′

2M2
∣∣ respectively. Similar as analysis in Section 3.1, we have

d(P ′
1, M) = 2 sin α

2 , and d(P ′
2, M) = 2 sin β

2 . Using method of analytical geometry, we have

d2(P ′
1, P ′

2) = 4 cos2
(

α + β

2
+ π

3

)
− 4 cos

(
α + β

2
+ π

3

)
cos

(
α − β

2

)
+ 1

+
[

cos (α − β) − cos

(
α + β + 2π

3

)]
(1 − cos δ) . (4)

Note that, when δ = 0, Equation (4) turns to Equation (1). Since positive δ also contributes to d(P ′
1, P

′
2) from Equation (4),

then d(P ′
1, P

′
2) will be definitely larger than 1 when θ1 + θ2 > π . Therefore, we still just need to consider the situation

where θ1 + θ2 < π .
Let x = cos((α + β)/2 + π/3), y = cos(α − β)/2, and z = cos δ. Thus,

d2(P ′
1, P ′

2) = 2(1 + z)x2 − 4yx + 2(1 − z)y2 + 1.

Construct function g(x, y) = 2(1 + z)x2 − 4yx + 2(1 − z)y2 + 1. It is easy to find the solution of inequality g(x, y) ≥ 1 and
its effective solution is

x

y
≤ 1 − z

1 + z
. (5)

Hence, d(P ′
1, P

′
2) ≥ 1 is equivalent to Equation (5).

Next, we will show some lemmas as we did in Section 3.1.

Lemma 8. Let ϕ1 and ϕ2 denote � v2 v1u1 and � v1 v2u2 . Then, at least one of them is at most π/2. Moreover, at least one of d(v1, P2)

and d(v2, P1) is equal to or larger than 1.

Proof. Here, we prove it by contradiction. We assume that both ϕ1 and ϕ2 are greater than π/2. In �v1u1 v2 and �u2u1 v2,
using the Law of Cosines, we have

d2(u1, v2) = d2(v1, v2) + d2(u1, v1) − 2d(v1, v2)d(u1, v1) cosϕ1

= d2(u2, v2) + d2(u1, u2) − 2d(u2, v2)d(u1, u2) cos θ2.

374 X. Gao et al. / Theoretical Computer Science 607 (2015) 363–380
Hence, we have

cosϕ1 = r2
1 − r2

2 + 2r2 cos θ2

2r1
.

Similarly,

cosϕ2 = r2
2 − r2

1 + 2r1 cos θ1

2r2
.

Since ϕ1 > π/2 and ϕ2 > π/2, we have{
r2

1 − r2
2 + 2r2 cos θ2 < 0

r2
2 − r2

1 + 2r1 cos θ1 < 0.
(6)

From Inequality (6), we can deduce that

r1 cos θ1 + r2 cos θ2 < 0. (7)

Since we still have θ1 + θ2 < π , then cos θ1 + cos θ2 > 0. Also, r1 ≤ 1 and r2 ≤ 1. Therefore, we can assert that, for θ1 and θ2,
one of them is ≥ π/2 and the other is ≤ π/2. Without loss of generality, we assume θ1 ≥ π/2. Then we have θ2 ≤ π/2.
From inequality (7), we have

r1(cos θ1 + cos θ2) + (r2 − r1) cos θ2 < 0.

Since r1(cos θ1 + cos θ2) ≥ 0 and cos θ2 ≥ 0, then we have r1 > r2. In this case, cosϕ1 will be equal to or larger than 0 which
contradicts with our assumption. Hence, Lemma 8 holds. �

Lemma 9. When δ is given, the maximal value of α (or β) we need to consider is 2 arctan

(
1 − 2 tan2(δ/2)√

3

)
.

Proof. In order to figure out the maximal value of α (or β) we need to consider in the next analysis, we think about the
critical state of Inequality (5), which means

x

y
= 1 − z

1 + z
.

Besides, this critical state also means d(P ′
1, P ′

2) = 1. In this case, β reaches maximal when α = 0. We denote it with βmax .
It is easy to figure out that x = cos(βmax/2 + π/3), y = cos(βmax/2) and z = cos δ. Therefore,

x

y
=

cos

(
βmax

2
+ π

3

)

cos

(
βmax

2

) = 1

2
−

√
3

2
tan

βmax

2
.

Besides,

1 − z

1 + z
= 1 − cos δ

1 + cos δ
= tan2

(
δ

2

)
.

Then, it is easy to conclude that Lemma 9 holds. �
Similarly, we can use (δ, r1, r2, θ1, θ2) to denote one instance of our problem. According to Lemma 8, we can conclude

that at least one of d(v1, P2) and d(v2, P1) is at least 1. Without loss of generality, we assume d(v1, P2) ≥ 1. Similar as
the analysis in the Section 3.1, we can verify that Lemma 7 could also be extended to three-dimensional situation here.
Therefore, we use instance of (δ, r1, 1, θ1, θ2) with d(v1, v2) = 1 to explore the lower value of d(P ′

1, P
′
2).

Lemma 10. For instance (δ, r1, 1, θ1 , θ2) with d(v1, v2) = 1, when δ and θ2 are fixed, α is minimum when r1 is minimum or maximal.

Proof. When δ, θ2 are fixed, we can figure out the relation between θ1 and r1 as we did in the Section 3.1. As Fig. 13 shows,
we build rectangular coordinate systems x − u1 − y1 and x − u1 − y2 on 	1 and 	2 respectively, where 	1 and 	2 denote
pp(v1) and pp(v2) respectively. Assuming the projection point of v2 on x − u1 − y1 is v p

2 , it can be calculated that its
coordinate in x − u1 − y2 is (1 − cos θ2, sin θ2 cos δ). The coordinate of v1 in x − u1 − y2 is (r1 cos θ1, r1 sin θ1). Then, it is easy
to figure out that d(v2, v

p
2) = sin θ2 sin δ and d(v2, u1) = 2 sin θ2

2 . Let μ and ρ denote d(v p
2 , v1) and d(v p

2 , u1) respectively.
Then,

X. Gao et al. / Theoretical Computer Science 607 (2015) 363–380 375
Fig. 13. Rectangular coordinate systems.

⎧⎨
⎩

μ2 = d2(v1, v2) − d2(v2, v p
2) = 1 − (sin θ2 sin δ)2

ρ2 = d2(v2, u1) − d2(v2, v p
2) =

(
2 sin θ2

2

)2 − (sin θ2 sin δ)2
(8)

Note that both μ and ρ have nothing to do with r1.
Using knowledge of analytical geometry, we have

(r1 cos θ1 − 1 + cos θ2)
2 + (r1 sin θ1 − sin θ2 cos δ)2 = μ2

⇒ sin(θ1 + φ) = r2
1 − μ2 + ρ2

2r1ρ
where tanφ = 1 − cos θ2

sin θ2 cos δ
. (9)

Since tan φ = 1 − cos θ2

sin θ2 cos δ
= tan(θ2/2)

cos δ
≥ tan

θ2

2
, then φ ≥ θ2/2. Besides, θ1, θ2 ∈ [π/3, 2π/3]. We have φ ∈ [π/6, π/3].

Therefore, θ1 + φ ≥ π/2. Consequently,

θ1 = π − φ − arcsin

(
r2

1 + ρ2 − μ2

2r1ρ

)
.

Now, the value of
∣∣P ′

1M1
∣∣ is a function of r1, θ2 and δ. We denote it as α(r1, θ2, δ) and

α(r1, θ2, δ) = π − φ − arcsin

(
r2

1 + ρ2 − μ2

2r1ρ

)
+ arccos

r1

2
− 2π

3
.

Considering μ, ρ, φ contribute nothing to ∂α(r1, θ2, δ)/∂r1, we have

∂α(r1, θ1, δ)

∂r1
= ρ2 − μ2 − r2

1

2r2
1ρ

1√√√√1 −
(

r2
1 + ρ2 − μ2

2r1ρ

)2
− 1

2

1√
1 −

(r1

2

)2
.

Next, we will discuss two situations to analyze the monotonicity of ∂α(r1, θ2, δ)/∂r1 with r1.

Case 1: When r2
1 ≥ ρ2 − μ2, it is easy to see that ∂α(r1)/∂r1 ≤ 0 which means the value of α(r1, θ2, δ) decreases when r1

increases.
Case 2: In this case, r2

1 < ρ2 − c2. Next we will explore the increasing interval of r1 for function α(r1, θ2, δ) when θ2 and δ
are fixed. If ∂α(r1)/∂r1 > 0, we have

∂α(r1, θ2, δ)

∂r1
> 0 ⇔ 1

2r2
1ρ

√√√√√√√
(ρ2 − μ2 − r2

1)2

1 −
(

r2
1 + ρ2 − μ2

2r1ρ

)2
− 1

2r2
1ρ

√√√√√ (r2
1ρ)2

1 −
(r1

2

)2
> 0

376 X. Gao et al. / Theoretical Computer Science 607 (2015) 363–380
⇔
(

ρ2 − μ2 − r2
1

r2
1ρ

)2

>

1 −
(

r2
1 + ρ2 − μ2

2r1ρ

)2

1 −
(r1

2

)2

⇔ ρ2 − μ2 − r2
1 > μr2

1.

Therefore, α(r1, θ1, δ) is a monotone increasing function with r1 when r2
1 <

ρ2 − μ2

1 + μ
.

In conclusion, when r2
1 <

ρ2 − μ2

1 + μ
, α(r1, θ1, δ) increases with r1 increasing; when r2

1 >
ρ2 − μ2

1 + μ
, α(r1, θ1, δ) decreases

with r1 increasing. Assuming r1 ∈ [rmin
1 , 1], where rmin

1 denotes the minimum r1, the value of α(r1, θ1, δ) can be minimized
only when r1 = rmin

1 or r1 = 1. Hence, Lemma 10 holds. �
For instance (δ, r1, 1, θ1, θ2) with d(v1, v2) = 1, β and δ are specified. Easy to see that smaller α results in smaller

d(P ′
1, P

′
2). Therefore, if d(P ′

1, P
′
2) ≥ 1 for both the situations where r1 = rmin

1 and r1 = 1, we can declare that d(P ′
1, P

′
2) ≥ 1

for all cases, according to Lemma 10. Therefore, what we need to do next is to verify d(P ′
1, P ′

2) ≥ 1 for these two situations.

Case 1: (r1 is minimal): For this case, we first need to figure out the minimal value of r1 when θ2 and δ are fixed. Consid-
ering v1 locates in B1\B2, it is obvious that, when v1 locates on the intersection of disk(u2) on plane 	1 with the
unit ball whose center locates on v2, r1 reaches minimal. In this state, we use θmin

1 to denote the current θ1. Then,
rmin

1 = 2 cos θmin
1 . According to Equation (8) and Equation (9), we have

μ2 = 1 − (sin δ sin θ2)
2

=
[
(1 − cos θ2) − rmin

1 cos θmin
1

]2 +
[

sin θ2 cos δ − r1 sin θmin
1

]2
.

Finally, we have{
2 sin 2θmin

1 sin θ2 cos δ − 2 cos 2θmin
1 cos θ2 = 1

rmin
1 = 2 cos θmin

1
(10)

From Equation (10), when θ2 and δ are given, we can figure out rmin
1 and θmin

1 . Then, we can figure out the value of
α and β . Furthermore, we can figure out the value of x, y and z in inequality (5). In order to prove d(P ′

1, P
′
2) ≥ 1

in this case, we need to verify

x

y
≤ 1 − z

1 + z
⇔

cos(θmin
1 − π

6
+ θ2

2
)

cos(θmin
1 − π

6
− θ2

2
)

=
1 − tan(θmin

1 − π

6
) tan

θ2

2

1 + tan(θmin
1 − π

6
) tan

θ2

2

≤ 1 − z

1 + z

⇔ tan(θmin
1 − π

6
) tan

θ2

2
≥ cos δ. (11)

Furthermore, for any fixed α and β , δ has a minimal value to satisfy d(P ′
1, P ′

2) ≥ 1. Among those minimal values
of δ, the maximal one is arccos 1

3 when d(P ′
1, P

′
2) = 1 and α = β = 0. That is to say, once δ ≥ arccos 1

3 , d(P ′
1, P

′
2) will

always be equal or larger than 1. Hence, in general case, we only need to consider the situation where δ ≤ arccos 1
3 .

According to Lemma 9, we can get the maximal value of β we need to consider. Therefore, the ranges of θ2 and δ
we need to consider are⎧⎪⎨

⎪⎩
δ ∈

[
0, arccos

1

3

]
θ2 ∈

[
π

3
, 2 arctan

(
1 − 2 tan2(δ/2)√

3

)
+ π

3

]
.

(12)

By numerical method, we can verify inequality (11) under conditions (12).
Case 2: (r1 is maximal): It is easy to figure out that the minimal value of r1 is 1 when v1 locates on Sur(B1). In this case,

P ′
1 and v1 are the same. d(P ′

1, P
′
2) = d(v1, v2) = 1 which meets the requirement in Theorem 5.

In conclusion, according to the analysis in Sections 3.1 and 3.2, Theorem 5 always follows. Therefore, we can use our
new projection rule to fix the incorrectness in [1].

X. Gao et al. / Theoretical Computer Science 607 (2015) 363–380 377
Algorithm 1 C-CDS-UBG(G(V , E)).
1: Set M = , B = , V ′ = V .
2: Pick a root r ∈ V ′ that r has the biggest degree in V ′ .
3: Set M = {r}, B = N(r), V ′ = V ′\N[r].
4: while V ′ �= do
5: Pick a node u ∈ N(B) such that |N(u) ∩ V ′| is maximized.
6: Set M = M ∪ {u}, B = B ∪ (M ∩ V ′), and V ′ = V ′\N(u).
7: end while
8: Set C = {r} and M ′ = M = {r}.
9: while M ′ �= do

10: Pick a node v ∈ N(C) such that |Mv,C | = max{|Mu,c |u ∈ N(C)}.
11: Set C = C ∪ {v} ∪ Mv,C and M ′ = M ′\Mv,C .
12: end while
13: Return C .

Algorithm 2 CUTLEAF(u).
1: Set P = Dom(u).
2: while P �= do
3: Pick a node x ∈ P .
4: if x has not been visited then
5: CUTLEAF(x).
6: end if
7: Set P = P\{x}.
8: end while
9: if (|Dom(v)| ≥ 2 for all v ∈ N(u) in graph G) and |Dom(u)| = 1 then

10: C = C\{u}.
11: end if
12: Return C .

4. MCDS construction improvement

So far, we have analyzed the approximation ratio of the MIS in UBG. In this section, we will introduce two prune methods
to improve Kim’s CDS construction algorithm. The following are some notations used in this section:

1) For node u, N(u) = {v|v ∈ V (G)\u and d(u, v) ≤ 1}, N[u] = N(u) ∪ {x}.
2) For node set C , N(C) = (∪v∈C N(v))\C .
3) For u and C , Mu,C = {v|d(u, v) ≤ 1, v is a MIS node and v /∈ C}.
4) For u, Dom(u) = {v|d(u, v) ≤ 1 and v is a CDS node}.

4.1. Algorithm for computing CDS

The algorithm introduced by Kim is formally described in Algorithm 1, which has two steps. It firstly generates an MIS M
such that every node in M has at least one 2-hop neighbor and no 1-hop neighbors. We can use Butenko and Ursulenko’s
algorithm to compute such MIS. The second step is to connect this MIS. Kim used a greedy strategy, which starts with
the original node and repeats round by round. In each round, it picks a node v adjacent to the connected component C
computed in the previous rounds that makes |Mv,C | maximal, and add it to C , it terminates when all the points in MIS are
connected.

4.2. Improve the generated CDS

In this 2-step algorithm, there is some redundancy in the given CDS C . Firstly, through the computing of MIS, some
nodes which have only one neighbor may be added to the MIS in order to maintain the properties of MIS. But when the
connectors are added, those points would be useless for the whole CDS, and it is better to adjust it to non-CDS nodes. Also,
the redundancy may occur in the inner side of the CDS due to the increased density of CDS nodes. Since the redundancy
occurs after the algorithm terminates, we can add two more steps afterward to reduce CDS size with the help of prune
techniques.

Notice that once we remove a CDS node, the remaining CDS must maintain all its original properties. Thus for a CDS
node u ∈ G , it could be removed iff:

1. Every point that u dominates must have at least one alternative dominator.
2. G(C\{u}) is connected.

Correspondingly, we design two prune methods to reduce CDS size. The first method is to reduce some leaf nodes
instantly. We use postorder traversal to traverse the CDS tree and reduce redundant points in it, as shown in Algorithm 2.

378 X. Gao et al. / Theoretical Computer Science 607 (2015) 363–380
Algorithm 3 CUTINSIDE(G(V , E), C).
1: Let G ′ be the subgraph generated by C , compute all the congestion nodes C ′ ∈ C .
2: Pick up a node u ∈ V s.t. u /∈ C ′ and (|Dom(v)| ≥ 2 for all v ∈ N(u) in G).
3: C = C\{u}. Return.

Algorithm 4 R-C-CDS-UBG(G(V , E)).
1: P = C-CDS-UBG(G(V , E)), pick a root r ∈ V ′ that r has the biggest degree in V ′ .
2: Run CUTLEAF(r).
3: Run CUTINSIDE(G(V , E), P) for several(30) times.
4: Return P .

Lemma 11. For any CDS C , after Algorithm 2 is executed, C is also a CDS.

Proof. Let C ′ be the CDS after Algorithm 2 is executed. If C ′ = C , then Lemma 11 holds. Otherwise, let C0 be the initial
CDS, Ci be the CDS after the i-th reduction and ui be the node reduced in this iteration. We show that if Ci is a CDS, then
Ci+1 is a CDS, for i ≥ 0. According to Line 9, all N(ui+1) has at least 2 dominators. Also, |Dom(ui+1) = 1| ensures that only
one CDS node is adjacent to ui+1. So Ci+1 = Ci\{ui+1} is also connected. Hence, Ci+1 is a CDS. Since C0 is a CDS, recursively
after Algorithm 2 is executed, C ′ is also a CDS. �
Lemma 12. For any CDS C , after Algorithm 3 is executed, C is also a CDS.

Proof. Similar to Lemma 2, Line 2 ensures that all N(u) has at least 2 dominators. Moreover, u is not a congestion node
ensures that C\{u} is connected. �

With two algorithms above, Algorithm 4 is an improvement for computing CDS.

Theorem 13. The time and space complexity of Algorithm 4 R-C-CDS-UBG is O (n2), where n is the number of nodes in a given input
UBG.

Proof. Since it is necessary to store the graph, the space complexity of Algorithm 4 is O (n2). Then we show that the time
complexity is O (n2).

Firstly, the input time complexity for Algorithm 4 is O (n). For the first step of Algorithm 1 (Lines 1–7), each round of the
while loop add one point to the MIS, so the while loop ends in O (n) rounds. In each round, a node x should be picked. Since
we can store and update it instantly, the time complexity of node selection is O (n) each round. Thus the time complexity
of the whole loop is O (n2).

For the second step of Algorithm 1 (Lines 8–13), since each round of the while loop joined at least one MIS point to the
CDS, and the MIS has O (n) nodes, the loop ends in O (n) rounds. During each round, we use an array to store |Mv,C |, and
the maintenance time complexity is O (n), since only points in N(N(v)) would change its |Mv,C |. Also, the time complexity
to select a v is O (n) each round. Hence, the time complexity of Algorithm 1 is O (n2).

For Algorithm 2, we can store |Dom(u)| for each u ∈ G . Once a CDS node v is reduced, only Dom(N(v)) nodes need to
change, so the maintenance complexity is O (n). Next, each edge in G will be visited for a constant times, so the overall
time complexity is O (n2). For Algorithm 3, we can use Tarjan’s strongly connected components algorithm for computing
congestion set C ′ , whose time complexity is O (n2). Hence, the time complexity of Algorithm 3 is O (n2).

For Algorithm 4, it runs Algorithm 1 once, Algorithm 2 once, and Algorithm 3 for a constant time, each with time O (n2).
Therefore, the time complexity of Algorithm 4 is O (n2). �
5. Simulation results

In this section, we compare Algorithm 4 with Kim’s Algorithm 1 to solve MCDS in UBGs. For the simulations, we deploy
wireless nodes in a 20 × 20 × 20 three-dimensional virtual space. We also ensure that the graph induced by all nodes is
connected. The number of nodes varies from 100 to 1000 by increasing 100. We use 1 as the maximum transmission range
of the nodes. Through the random graph generation process, we control the lower bound of distance between two nodes
at 0.25, 0.5, 0.75. Thus, we can have graphs with different node density. In Fig. 14, we use R-C-CDS-UBG to identify our
algorithm, and C-CDS-UBG to identify Kim’s.

Fig. 14 shows the comparison of the performance between two algorithms when the lower bound of distance between
two points is 0.25, 0.5, and 0.75 respectively. Through the figure, we can see that whatever the graph is, our algorithm
can give a better answer than Kim’s averagely. The ratio between our answer and Kim’s is nearly 0.78. Also, through the
comparison, we can figure out that in most situations, our improvement is steady.

Fig. 15 shows a sample of UBG which has 500 points. The first picture is the result by Kim’s algorithm with 208 CDS
points, while the second is the result by prune algorithm with 155 CDS points. In this example our algorithm reduces CDS
size by 25%, and it can be found in the graph where lots of the boundary nodes are dropped to make the CDS much smaller.

X. Gao et al. / Theoretical Computer Science 607 (2015) 363–380 379
Fig. 14. Comparison with different parameter settings.

Fig. 15. An example solution with n = 500 points.

6. Conclusion

In this paper, we first pointed out the problem in Kim’s method [1]. Then, we proposed a new projection method for
solving the two-ball problem. With this new projection method, we successfully improved the ratio of mis(G)/mcds(G) in
UBG into 10.917. Moreover, we also optimized the algorithm for minimum connected dominating set selection in [1] with
prune process and validate the efficiency of our design by numerical experiments.

Acknowledgement

This work has been supported in part by the National Natural Science Foundation of China (Grant number 61202024,
61472252, 61133006, 61422208), China 973 project (2014CB340303), Shanghai Educational Development Foundation (Chen-
guang Grant No. 12CG09), Science and Technology Commission of Shanghai Municipality (Pujiang Grant No. 13PJ1403900),
the Natural Science Foundation of Shanghai (Grant No. 12ZR1445000), and in part by Jiangsu Future Network Research
Project No. BY2013095-1-10 and CCF-Tencent Open Fund. The opinions, findings, conclusions, and recommendations ex-
pressed in this paper are those of the authors and do not necessarily reflect the views of the funding agencies or the
government. We also would like to thank Mr. Fengwei Gao and Ms. Ling Ding for their contributions on the early versions
of this paper.

References

[1] D. Kim, Z. Zhang, X. Li, W. Wang, W. Wu, D.-Z. Du, A better approximation algorithm for computing connected dominating sets in unit ball graphs,
IEEE Trans. Mob. Comput. 9 (8) (2010) 1108–1118.

[2] J. Liu, H. Nishiyama, N. Kato, J.-f. Ma, X. Jiang, Throughput-delay tradeoff in mobile ad hoc networks with correlated mobility, in: IEEE International
Conference on Computer Communications (INFOCOM), 2014, pp. 2768–2776.

[3] M.B. Younes, A. Boukerche, A traffic balanced mechanism for path recommendations in vehicular ad-hoc networks, in: IEEE Global Communications
Conference (GLOBECOM), 2014, pp. 45–50.

[4] M. Benter, H. Frey, et al., Reactive planar spanner construction in wireless ad hoc and sensor networks, in: IEEE International Conference on Computer
Communications (INFOCOM), 2013, pp. 2193–2201.

[5] B. Tang, B. Ye, S. Lu, S. Guo, I. Stojmenovic, Latency-optimized broadcast in mobile ad hoc networks without node coordination, in: ACM International
Symposium on Mobile Ad Hoc Networking and Computing (MOBIHOC), 2014, pp. 317–326.

[6] Y. Hong, D. Bradley, D. Kim, D. Li, A.O. Tokuta, Z. Ding, Construction of higher spectral efficiency virtual backbone in wireless networks, Ad Hoc Netw.
25 (2015) 228–236.

[7] Y. Dai, J. Wu, C. Xin, Efficient virtual backbone construction without a common control channel in cognitive radio networks, IEEE Trans. Parallel Distrib.
Syst. 25 (12) (2014) 3156–3166.

[8] M.A. Togou, A. Hafid, P.K. Sahu, A stable minimum velocity cds-based virtual backbone for vanet in city environment, in: IEEE Conference on Local
Computer Networks (LCN), 2014, pp. 510–513.

http://refhub.elsevier.com/S0304-3975(15)00719-7/bib4B696Ds1
http://refhub.elsevier.com/S0304-3975(15)00719-7/bib4B696Ds1
http://refhub.elsevier.com/S0304-3975(15)00719-7/bib6C6975323031347468726F756768707574s1
http://refhub.elsevier.com/S0304-3975(15)00719-7/bib6C6975323031347468726F756768707574s1
http://refhub.elsevier.com/S0304-3975(15)00719-7/bib796F756E65733230313474726166666963s1
http://refhub.elsevier.com/S0304-3975(15)00719-7/bib796F756E65733230313474726166666963s1
http://refhub.elsevier.com/S0304-3975(15)00719-7/bib62656E746572323031337265616374697665s1
http://refhub.elsevier.com/S0304-3975(15)00719-7/bib62656E746572323031337265616374697665s1
http://refhub.elsevier.com/S0304-3975(15)00719-7/bib74616E67323031346C6174656E6379s1
http://refhub.elsevier.com/S0304-3975(15)00719-7/bib74616E67323031346C6174656E6379s1
http://refhub.elsevier.com/S0304-3975(15)00719-7/bib686F6E6732303135636F6E737472756374696F6Es1
http://refhub.elsevier.com/S0304-3975(15)00719-7/bib686F6E6732303135636F6E737472756374696F6Es1
http://refhub.elsevier.com/S0304-3975(15)00719-7/bib64616932303134656666696369656E74s1
http://refhub.elsevier.com/S0304-3975(15)00719-7/bib64616932303134656666696369656E74s1
http://refhub.elsevier.com/S0304-3975(15)00719-7/bib746F676F7532303134737461626C65s1
http://refhub.elsevier.com/S0304-3975(15)00719-7/bib746F676F7532303134737461626C65s1

380 X. Gao et al. / Theoretical Computer Science 607 (2015) 363–380
[9] J.S. He, S. Ji, Y. Pan, Y. Li, Greedy construction of load-balanced virtual backbones in wireless sensor networks, Wirel. Commun. Mob. Comput. 14 (7)
(2014) 673–688.

[10] M. Kouider, P.D. Vestergaard, et al., Generalized connected domination in graphs, Theoret. Comput. Sci. 8 (1) (2006) 57–64.
[11] S. Gaspers, M. Liedloff, et al., A branch-and-reduce algorithm for finding a minimum independent dominating set, Theoret. Comput. Sci. 14 (1) (2012)

29–42.
[12] A. Gonzalez, Ó. Lázaro, S. Vaz, Deploying and experimenting wireless ad hoc networks in mountainous regions for broadband multimedia service

access, in: International ICST Mobile Multimedia Communications Conference (MOBIMEDIA), 2009, pp. 21–27.
[13] D.D. Tan, D.-S. Kim, Cooperative transmission scheme for multi–hop underwater acoustic sensor networks, Int. J. Commun. Netw. Distrib. Syst. 14 (1)

(2015) 1–18.
[14] X.-h. Wang, P.-f. Li, Improved data association method in binocular vision-slam, in: IEEE Intelligent Computation Technology and Automation (ICICTA),

2010, pp. 502–505.
[15] D. Yang, An immunity-based ant colony optimization topology control algorithm for 3d wireless sensor networks, Sens. Transducers J. 150 (3) (2013)

125–129.
[16] P.-J. Wan, K.M. Alzoubi, O. Frieder, Distributed construction of connected dominating set in wireless ad hoc networks, in: IEEE International Conference

on Computer Communications (INFOCOM), 2002, pp. 1597–1604.
[17] W. Wu, H. Du, X. Jia, Y. Li, S.C.-H. Huang, Minimum connected dominating sets and maximal independent sets in unit disk graphs, Theoret. Comput.

Sci. 352 (1) (2006) 1–7.
[18] X. Gao, Y. Wang, X. Li, W. Wu, Analysis on theoretical bounds for approximating dominating set problems, Discrete Math. Algorithms Appl. 1 (1) (2009)

71–84.
[19] M. Li, P.-J. Wan, F. Yao, Tighter approximation bounds for minimum cds in unit disk graphs, Algorithmica 61 (4) (2011) 1000–1021.
[20] Y.L. Du, H.W. Du, A new bound on maximum independent set and minimum connected dominating set in unit disk graphs, J. Comb. Optim. (2013)

1–7.
[21] C. Zong, Sphere Packings, vol. 3, Springer, 1999.
[22] J.C. Hansen, E. Schmutz, Comparison of two cds algorithms on random unit ball graphs, in: Algorithm Engineering and Experiments & Analytic Algo-

rithmics and Combinatorics (ALENEX/ANALCO), 2005, pp. 206–211.
[23] S. Butenko, S. Kahruman-Anderoglu, O. Ursulenko, On minimum connected dominating set problem in unit-ball graphs, Optim. Lett. 5 (2011) 195–205.
[24] X. Zhong, J. Wang, N. Hu, Connected dominating set in 3-dimensional space for ad hoc network, in: IEEE Wireless Communications and Networking

Conference (WCNC), 2007, pp. 3609–3612.
[25] F. Zou, X. Li, D. Kim, W. Wu, Construction of minimum connected dominating set in 3-dimensional wireless network, in: International Conference on

Wireless Algorithms, Systems, and Applications (WASA), 2008, pp. 134–140.
[26] D.-Z. Du, P.-J. Wan, Connected Dominating Set: Theory and Applications, vol. 77, Springer, 2012.

http://refhub.elsevier.com/S0304-3975(15)00719-7/bib686532303134677265656479s1
http://refhub.elsevier.com/S0304-3975(15)00719-7/bib686532303134677265656479s1
http://refhub.elsevier.com/S0304-3975(15)00719-7/bib6B6F75696465723230303667656E6572616C697A6564s1
http://refhub.elsevier.com/S0304-3975(15)00719-7/bib67617370657273323031326272616E6368s1
http://refhub.elsevier.com/S0304-3975(15)00719-7/bib67617370657273323031326272616E6368s1
http://refhub.elsevier.com/S0304-3975(15)00719-7/bib676F6E7A616C657A323030396465706C6F79696E67s1
http://refhub.elsevier.com/S0304-3975(15)00719-7/bib676F6E7A616C657A323030396465706C6F79696E67s1
http://refhub.elsevier.com/S0304-3975(15)00719-7/bib74616E32303135636F6F7065726174697665s1
http://refhub.elsevier.com/S0304-3975(15)00719-7/bib74616E32303135636F6F7065726174697665s1
http://refhub.elsevier.com/S0304-3975(15)00719-7/bib57616E67s1
http://refhub.elsevier.com/S0304-3975(15)00719-7/bib57616E67s1
http://refhub.elsevier.com/S0304-3975(15)00719-7/bib59616E67s1
http://refhub.elsevier.com/S0304-3975(15)00719-7/bib59616E67s1
http://refhub.elsevier.com/S0304-3975(15)00719-7/bib57616E34s1
http://refhub.elsevier.com/S0304-3975(15)00719-7/bib57616E34s1
http://refhub.elsevier.com/S0304-3975(15)00719-7/bib5775332E38s1
http://refhub.elsevier.com/S0304-3975(15)00719-7/bib5775332E38s1
http://refhub.elsevier.com/S0304-3975(15)00719-7/bib47616F332E3435s1
http://refhub.elsevier.com/S0304-3975(15)00719-7/bib47616F332E3435s1
http://refhub.elsevier.com/S0304-3975(15)00719-7/bib4C69332E3433s1
http://refhub.elsevier.com/S0304-3975(15)00719-7/bib647532303133s1
http://refhub.elsevier.com/S0304-3975(15)00719-7/bib647532303133s1
http://refhub.elsevier.com/S0304-3975(15)00719-7/bib5370686572657061636B696E67s1
http://refhub.elsevier.com/S0304-3975(15)00719-7/bib486173656Es1
http://refhub.elsevier.com/S0304-3975(15)00719-7/bib486173656Es1
http://refhub.elsevier.com/S0304-3975(15)00719-7/bib427574656E6B6F3131s1
http://refhub.elsevier.com/S0304-3975(15)00719-7/bib5A686F6E67s1
http://refhub.elsevier.com/S0304-3975(15)00719-7/bib5A686F6E67s1
http://refhub.elsevier.com/S0304-3975(15)00719-7/bib5A6F75s1
http://refhub.elsevier.com/S0304-3975(15)00719-7/bib5A6F75s1
http://refhub.elsevier.com/S0304-3975(15)00719-7/bib647532303132636F6E6E6563746564s1

	A better approximation for constructing virtual backbone in 3D wireless ad-hoc networks
	1 Introduction
	2 Independent points in two adjacent unit balls
	2.1 Review Kim's method in [1]
	2.2 The problem of Kim's method with counter examples

	3 A new projection method
	3.1 Proof of Theorem 5 in 2-dimensional space
	3.2 Proof of Theorem 5 in 3-dimensional space

	4 MCDS construction improvement
	4.1 Algorithm for computing CDS
	4.2 Improve the generated CDS

	5 Simulation results
	6 Conclusion
	Acknowledgement
	References

